146 research outputs found

    Attend and Interact: Higher-Order Object Interactions for Video Understanding

    Full text link
    Human actions often involve complex interactions across several inter-related objects in the scene. However, existing approaches to fine-grained video understanding or visual relationship detection often rely on single object representation or pairwise object relationships. Furthermore, learning interactions across multiple objects in hundreds of frames for video is computationally infeasible and performance may suffer since a large combinatorial space has to be modeled. In this paper, we propose to efficiently learn higher-order interactions between arbitrary subgroups of objects for fine-grained video understanding. We demonstrate that modeling object interactions significantly improves accuracy for both action recognition and video captioning, while saving more than 3-times the computation over traditional pairwise relationships. The proposed method is validated on two large-scale datasets: Kinetics and ActivityNet Captions. Our SINet and SINet-Caption achieve state-of-the-art performances on both datasets even though the videos are sampled at a maximum of 1 FPS. To the best of our knowledge, this is the first work modeling object interactions on open domain large-scale video datasets, and we additionally model higher-order object interactions which improves the performance with low computational costs.Comment: CVPR 201

    Structure-Encoding Auxiliary Tasks for Improved Visual Representation in Vision-and-Language Navigation

    Full text link
    In Vision-and-Language Navigation (VLN), researchers typically take an image encoder pre-trained on ImageNet without fine-tuning on the environments that the agent will be trained or tested on. However, the distribution shift between the training images from ImageNet and the views in the navigation environments may render the ImageNet pre-trained image encoder suboptimal. Therefore, in this paper, we design a set of structure-encoding auxiliary tasks (SEA) that leverage the data in the navigation environments to pre-train and improve the image encoder. Specifically, we design and customize (1) 3D jigsaw, (2) traversability prediction, and (3) instance classification to pre-train the image encoder. Through rigorous ablations, our SEA pre-trained features are shown to better encode structural information of the scenes, which ImageNet pre-trained features fail to properly encode but is crucial for the target navigation task. The SEA pre-trained features can be easily plugged into existing VLN agents without any tuning. For example, on Test-Unseen environments, the VLN agents combined with our SEA pre-trained features achieve absolute success rate improvement of 12% for Speaker-Follower, 5% for Env-Dropout, and 4% for AuxRN

    Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision Tasks

    Full text link
    Adapting large-scale pretrained models to various downstream tasks via fine-tuning is a standard method in machine learning. Recently, parameter-efficient fine-tuning methods show promise in adapting a pretrained model to different tasks while training only a few parameters. Despite their success, most existing methods are proposed in Natural Language Processing tasks with language Transformers, and adaptation to Computer Vision tasks with Vision Transformers remains under-explored, especially for dense vision tasks. Further, in multi-task settings, individually fine-tuning and storing separate models for different tasks is inefficient. In this work, we provide an extensive multi-task parameter-efficient benchmark and examine existing parameter-efficient fine-tuning NLP methods for vision tasks. Our results on four different dense vision tasks showed that existing methods cannot be efficiently integrated due to the hierarchical nature of the Hierarchical Vision Transformers. To overcome this issue, we propose Polyhistor and Polyhistor-Lite, consisting of Decomposed HyperNetworks and Layer-wise Scaling Kernels, to share information across different tasks with a few trainable parameters. This leads to favorable performance improvements against existing parameter-efficient methods while using fewer trainable parameters. Specifically, Polyhistor achieves competitive accuracy compared to the state-of-the-art while only using ~10% of their trainable parameters. Furthermore, our methods show larger performance gains when large networks and more pretraining data are used.Comment: Accepted to NeurIPS 2022; Project Page is at https://ycliu93.github.io/projects/polyhistor.htm
    • …
    corecore